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Abstract: The paper proposes a recursive single- 
most-likely-replacement (SMLR) equaliser, that is 
a fixed-lag block signal processing algorithm 
indexed by the block size L and the number of 
decisions N < L at each recursion, for channels in 
the presence of intersymbol interference of finite 
or infinite length and additive white Gaussian 
noise. Both computational load and storage 
required by the proposed recursive SMLR equal- 
iser are linearly proportional to the block size. 
Two simulation examples illustrate the per- 
formance of the proposed recursive SMLR equal- 
iser. 

1 Introduction 

In digital communication systems the principal sources 
resulting in transmission error are intersymbol inter- 
ference and additive noise. A great many channel equal- 
isers have been reported to detect discrete symbols trans- 
mitted over a communication channel with intersymbol 
interference, and basically they can be classified into two 
major categories. Briefly, the first category consists of 
linear equalisers and decision-feedback equalisers (DFE) 
[I-31; these detect digital symbols in a symbol-by- 
symbol manner. In general, equalisers of this category 
require low computational complexity at the expense of 
high symbol error rate (SER). 

The second category includes various equalisation 
algorithms [4-151 based on maximum-likelihood 
sequence estimation (MLSE). Their SER is generally 
much lower than the SER of the first category. When the 
channel has a finite length v, Forney’s maximum- 
likelihood sequence estimation via Viterbi algorithm 
(MLSE-VA) [4] provides the optimum solution for 
MLSE. However, both computational load and storage 
required by the Viterbi algorithm are proportional to the 
total number of states of trellis, which grows exponen- 
tially with the channel length. When the channel length 
becomes large, the algorithm becomes impractical. To 
reduce the complexity of Viterbi algorithm and retain 
much of the performance advantage of MLSE, various 
suboptimum algorithms have been reported. For 
instance, the complexity of Viterbi algorithm can be 
reduced by directly truncating the channel impulse 
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response [SI. The computational complexity can also be 
reduced by shaping the channel into a short impulse 
response through prefiltering such as applying a linear 
(or decision-feedback) equaliser [6-81 prior to applying 
the Viterbi algorithm. However, either neglecting the 
residual interference terms or prefiltering operations may 
result in significant error propagation, and therefore can 
lead to high SER. The delayed decision-feedback 
sequence estimation (DDFSE) [9] is another method to 
reduce the number of states. The complexity of DDFSE 
is controlled by a finite positive integer 5, the reduced 
memory (for Viterbi algorithm) of the channel. When 
[ = 0, the DDFSE algorithm reduces to a conventional 
DFE in the first class; when the memory v of channel is 
finite and ( = v, the DDFSE is equivalent to MLSE-VA; 
when 5 < v, the larger [, the closer is the performance of 
the DDFSE algorithm to the performance of MLSE. 
However, as in Viterbi algorithm, the number of states of 
trellis of the DDFSE algorithm too increases exponen- 
tially with the parameter [. Recently, Williamson et al. 
[lo] proposed a block decision feedback equaliser (block 
DFE) structure which is indexed by the block length L 
and the number of decisions N < L made at each recur- 
sion. With the structure of block DFE, they also devel- 
oped a family of equalisers, called (L, N)-DFE, based on 
maximum a posteriori decision criterion and another 
family of equalisers, called high SNR (L, N)-DFE for the 
case of high signal-to-noise ratio (SNR) based on the 
same criterion. The (1, I)-DFE emulates a conventional 
DFE; the (L, N)-DFE can have performance arbitrarily 
close to that of MLSE as both L and N approach infin- 
ity. Although the block size L can be taken to be small 
even if the channel impulse response is long because, as 
in DDFSE, the tail of the channel could be significantly 
cancelled by the use of decision feedback, the complexity 
of the optimum decision procedure for both (L, N)-DFE 
and high SNR (L, N)-DFE increases exponentially with 
L, and therefore, the block length L can not be chosen 
large. 

Channel equalisation in digital communications is 
similar to deconvolution problems in other areas such as 
seismology, speech processing, radio astronomy and 
ultrasonic nondestructive evaluation except for different 
characteristics of the channel input and the channel itself. 
Next, let us briefly review the concept of the well-known 
single-most-likely-replacement (SMLR) detection algo- 
rithm [16-181 which is the kernel of many blind 
maximum-likelihood deconvolution algorithms [ 18, 191 
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because the new equaliser to be presented later is based 
on the same concept. 

The SMLR algorithm proposed by Kormylo and 
Mendel is an omine iterative suboptimum maximum- 
likelihood algorithm which detects spike locations of a 
sparse spike train with random amplitudes modelled as a 
Bernoulli-Gaussian ( E G )  signal. At each iteration, for a 
reference Bernoulli (binary) sequence, it computes a set of 
log-likelihood ratios of test sequences to a reference 
sequence where each test sequence differs from the refer- 
ence sequence only at a single time location, and then 
replaces the reference sequence with the test sequence 
associated with the largest log-likelihood ratio. This algo- 
rithm performs well and is computationally efficient. Chi 
and Chen [20] further proposed a recursive E G  model 
based SMLR algorithm, a block signal processing algo- 
rithm, which not only is computationally efficient but 
also inherits all the performance advantages of the ofline 
SMLR algorithm. Moreover, both computational load 
and total storage required by the recursive B-G model 
based SMLR algorithm are linearly proportional to the 
block size. 

In this paper we propose a recursive SMLR equaliser 
for channels with intersymbol interference of finite or 
infinite length in the presence of additive white Gaussian 
noise. Basically, the proposed recursive SMLR equaliser 
can be thought of as a high SNR (L, N)-DFE which uses 
a suboptimum SMLR detection algorithm instead of the 
optimum decision procedure used in the block DFE [IO]. 
However, both computational load and total storage 
required by the proposed recursive SMLR equaliser are 
proportional to M . L rather than M L  as required by the 
block DFE where M is the number of different symbols 
transmitted through the channel. 

2 A recursive SMLR detection algorithm for 
channel equalisation 

Consider the following baseband discrete-time channel 
model 

(1) 
m 

z ( j )  = p ( j )  * v ( j )  + n(j)  = C V(Mj - i) 
i = O  

where z ( j )  is the noisy channel output, u ( j )  is the channel 
impulse response, p ( j )  is the channel input and n(j)  is 
additive channel noise. Assume that p ( j )  is a sequence of 
discrete values drawn from a finite set U = {u l .  u 2 ,  . . . , 
uM} with equal probability I/M and that n( j )  is white 
Gaussian with variance U:. The new recursive SMLR 
equaliser has the same basic structure as the block DFE 
[lo] which is indexed by the block size L and the number 
of decisions N < L made at each recursion. At the recur- 
sion k, the data block z, = (z(k), z(k + I), ..., 
z(k + L - 1))= is processed to iteratively search for the 
optimum estimate ik = (%k), ji(k + l), . . . , ji(k + L - 1))= 
of p, = (p(k), p(k + l), ..., p(k + L - 1))=. When the 
detection algorithm converges, the N elements of jik = 
[I,: 0(L-N)]j3k are the detected (p(k), p(k  + I), . . . , 
p(k + N - I))= where I, is an N x N identity matrix, 
O,_,, is an N x ( L  - N) matrix of zeros. Then the next 
block z k f N  is processed for the next recursion k + N .  
Next, let us present the new recursive SMLR equaliser in 
detail. 

Assume that the convolutional model (eqn. 1) can also 
be represented in a pth-order state-variable form [lo] as 

4) = W j  - 1) + wL(j) 

z( j )  = hTx( j )  + n( j )  

(2) 

(3) 
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where x( j ) ,  y and h are p x 1 vectors, '3 is a p x p matrix. 
Note that 

(4) 

and that given u( j ) ,  there exist many (Q, y. h)s [21]. 
Let e, = (e(k), e(k + I), . . . , e(k + L - 1))' where 

e( j )  = z ( j )  - f ( j )  = z ( j )  - P( j )  * 4 j )  ( 5 )  
The new recursive SMLR equaliser tries to search for 
pk = ik such that the unconditional likelihood function 
Cl01 

is maximum at the recursion k under the assumption that 
p ( j )  for all j < k have been correctly detected. 

The signal processing procedure of the proposed 
recursive SMLR equaliser is shown in Fig. 1 which 

Z ( l )  
I c 

input  d a t a  block 
z(k),z(k+l), .... Z(k.L-1) 

iter(k):l 

4 
compute 

lnA(1.i) .  k s j s  k+L-l, l<iszM 
and search for 

In A ( j * ,  i f )  = rnax ( lnA( 1 ,  i 1) 

- 
iler(k)= i ter (k) - l  

ur(j*) = u i *  

initial guess f o r  
p ( k + L ) , u ( k r L + l ) ,  ..., u ( k + L * N - l )  Ino I 

I -$ 
A I 

b(j)=ur(~), l=k,k+l ,  .._. k+N-1 I 

1 
; ( I )  

Fig. 1 
equaliser. 

Signnl processing procedure of the proposed recursive S M L R  

includes an inner loop and an outer loop. The inner loop 
is an iterative detection procedure based on a set of log- 
likelihood ratios In A(j, i) computed from the input data 
block z,. When the inner loop converges, only N ele- 
ments of ji, = [I,: 0(L-N)]j3k are the desired optimal esti- 
mates of (p(k), p(k + l), ..., p(k + N - I))T. The outer 
loop is nothing but a reset procedure for the next recur- 
sion associated with s,,, including initial guesses for 
p k f N  as well as a new data block z,,,. Next, let us 
present how the detection is performed in the inner loop. 

Let A ( j ,  i) denote the likelihood ratio 

f o r k < j < k + L - I  a n d l < i < M  (7)  
where p: = (p,(k), p,(k + I), ..., p,(k + L - I))= is a re- 
ference sequence and p: = (p,(k) = p,(k), . . . , p t ( j  - 1) = 
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p,(j - l), p,(A = uir p,(j + 1) = p,(j + I), . .. , pdk + L 
- 1) = pr(k + L - 1))= is a test sequence which differs 

from p: only at a single time location j. During the recur- 
sion k, the proposed recursive SMLR equaliser shown in 
Fig. 1 searches for the optimal jik through the following 
procedure: 

(a) Compute In A(j, i) for all (j, i) E ((j, i)l k < j < 
k + L - 1 , 1  < i f M}. 

(b) Assume that In A(j*, i*) = max {ln A(j, i) 1 k < j < 
k + L - 1, 1 < i < M}; if In A(j*, i*) > 0, update p,(j*) 
by ui. and to to (a). 

Note that In A(j, i) = 0 when ui = p,(j) .  When In A(j, 
i) f 0 for all (j, i) E {(j, i)l k < j < k + L - 1, 1 < i < M}, 
the detection procedure is finished and the N elements of 
ji, = [ I N :  OO-N,]p: are the desired estimates ji(k), ji(k 
+ I), ..., ji(k + N - 1) while pr(k + N), h,(k + N + l), 

. . . , p,(k + L - 1) together with initial guesses for 
p(k + L), p(k + L + l), . . . , p ( k  + L + N - 1) will be used 
as the initial values for p k + N  for the next recursion associ- 
ated with S k + N .  For N = 1, one can arbitrarily select a 
ui E U as the initial guess for p(k  + L), and for N 1 1, any 
conventional DFE [1, 2, 9, lo] can be used to obtain 
initial values for p(k + L), p(k + L + I), ..., 
p(k + N + L - I). The proposed recursive SMLR detec- 
tion algorithm differs from Chi and Chen's recursive 
SMLR detection algorithm [20] in that the channel input 
p(k)  is an M-ary sequence for the former and a B-G 
sequence p(j) = q(j) .  r(j) for the latter where q(j) is 
a Bernoulli sequence with probability I for q(j) = 1 and 
probability 1 - R for 4(j) = 0 and r(j) is a white Gaussian 
sequence, and that the expressions needed for computing 
the key log-likelihood ratios In A(j, i) are totally different 
for both. Next, let us present how to compute In A(j, i). 

The formula for computing In A(j, i) which is needed 
in the detection procedure (U) can be shown to be 

In Nj, 4 = {f( j )  - $Cui - ~,(j)la(j)}Cu~ - ~,(j)l (8) 

f(j) = f W )  (9) 

4j) = f C W ( h  (10) 

where 

and 

in which w(j) is a p x 1 vector and C,(j) is a p x p 
matrix. The vector w(j)  and matrix CJj) can be obtained 
by running the causal filter (in state-variable form) 

= Q t ( j  - 1) + w,(j) (1 1) 
i(j) = hTi(j) (12) 
?(j) = z(j) - 2(j) (13) 

forwards from j = k to k + L - 1 and then running the 
anticausal filter (in state-variable form) 

w( j )  = m T w ( j  + 1) + h?(j)/u; 
c,(j) = mTC,(j + I)@ + hhT/u,2 

(14) 
(15) 

backwards from j = k + L - 1 to k. The proof of eqns. 
8-15 is given in Appendix 6. The initial condition 
t(k - 1) for eqn. 11 is associated with Sk_,, and thus is 
available prior to the time point k. The initial conditions 
for eqns. 14 and 15 are w(k + L) = 0 (zero vector) and 
C,(k + L) = CO] (zero matrix), respectively. Next, let us 
discuss the computational efficiency for computing the 
quantitiesf(j) and a(j) needed to compute In A(j, i) and 
their physical meaning. 

Note that the state-variable equations given by eqns. 
11 and 12 are the same as the state-variable equations 
given by eqns. 2 and 3 and that i(j) is nothing but the 
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predicted z(j) and i(j) given by eqn. 13 is the associated 
prediction error. Therefore, when p,(j) = p(j) for all 
k < j < k + L - 1 and p(j) for all j < k have been cor- 
rectly detected by assumption, i(j) = n(j) is a white 
Gaussian sequence with variance U;. Furthermore, eqns. 
14 and 9 form an anticausal filter with the impulse 
response ub(j) given by 

Together with eqn. 4 this implies 

Therefore, f(j) is the output of an anticausal matched 
filter associated with the channel u(j) driven by Z(j)/ui. 
On the other hand, a(j) given by eqn. 10 is the variance 
off(j) because CJj) given by eqn. 15 can be easily shown 
to be the covariance matrix of w(j) given by eqn. 14 when 
i(j) is a white sequence with variance U:. Moreover, ak = 
(4k), a(k + l), . . . , a(k + L - I))= are the same for all k 
because they do not depend on the data block zx and 
therefore can be computed and stored ahead of time as 
long as the channel parameters m, y as well as /J and 
noise variance U: are known a priori. Therefore, the com- 
putational efficiency of the proposed recursive SMLR 
equaliser is due to the fact that onlyf(j) for j = k, k + 1 ,  
. . . , k + L - 1 need be computed in order to obtain the 
L x M log-likelihood ratios In A(j, i) for j = k, k + 1, . . . , 
k + L - 1 and i = 1, 2, ._., M at each iteration. On the 
other hand, Chi and Chen's recursive SMLR detection 
algorithm [20] computes the correspondingf(j) and a(j) 
needed to compute the corresponding In A( j, i) for M = 2 
by an optimal Kalman smoother [17, 18,22,23] which is 
much more complicated than the linear filter u(j) and the 
matched filter ub(j) used by the proposed recursive SMLR 
equaliser. Next, it is appropriate to address the distinc- 
tions between the proposed recursive SMLR equaliser 
and the block DFE as well as Viterbi algorithm based 
equalisers from the computation and storage points of 
view. 

When (L, N) = (1, I), the proposed recursive SMLR 
equaliser reduces to a conventional DFE (equivalent to 
the DDFSE for [ = 0 and the (1, 1)-DFE) [I ,  2, 9, lo]. 
The proposed recursive SMLR equaliser can also be 
thought of as a high SNR (L, N)-DFE with the optimum 
decision procedure replaced by the SMLR detection 
procedure. As previously discussed, the proposed recur- 
sive SMLR equaliser computes L x M log-likelihood 
ratios In A(j, i) for all (j, i) E {(j, i)l k < j < k + L - 1, 
1 < i < M} by processing the data block Z, with a causal 
filter (same as the channel) (forward processing) followed 
by the associated anticausal matched filter (backward 
processing). However, computational load for the detec- 
tion of p, should be proportional to iter(k) x L where 
iter(k) is the number of iterations spent in the inner 
loop in the SMLR detection procedure shown in Fig. 1. 
Hence, both computational load and storage required by 
the proposed recursive SMLR equaliser are linearly pro- 
portional to the block size L. Moreover, the parameter L 
associated with the proposed recursive SMLR equalizer 
plays the role similar to the reduced memory [ in 
DDFSE, the block length L in block DFE and the trun- 
cated channel length v in MLSE-VA. As previously men- 
tioned, both storage and computational load required by 
equalisers based on Viterbi algorithm [4, 91 are pro- 
portional to the number of states of trellis (e.g. M"' in 
MLSE-VA, MS+' in DDFSE). Hence, the proposed 
SMLR equaliser is much more practical than channel 

= 4-j) (17) 
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equalisers which use Viterbi algorithm for the detection 
of Aj) from the view points of both computational load 
and storage, and therefore, it is particularly suitable for 
the case when the block length L must be chosen large in 
order to retain satisfactory performance. 

3 Simulation 

In this Section two simulation examples are provided to 
illustrate the performance of the recursive SMLR equal- 
iser. In the simulation, a binary random sequence of {I, 
-1) was generated which was then convolved with a 
selected channel impulse response (infinite-length channel 
in example 1 and finite-length channel in example 2) to 
obtain the simulation data of length more than 500000 
for SNR equal to 8, 10, 12, 14 and 16 (in dB), respectively. 
Then p ( j )  was estimated using the proposed SMLR 
equaliser. With the same simulation data for performance 
comparison, A j )  was also estimated using high SNR (L, 
N)-DFE, the DDFSE algorithm, MLSE-VA and a con- 
ventional DFE [I, 2, 9,  lo] which is equivalent to the 
DDFSE algorithm for [ = 0, (1, I)-DFE as well as the 
proposed recursive SMLR equaliser for (L, N) = (1, 1). 

Example 1 : (infinite-length channel) 
A one-pole channel with the infinite impulse response 
v( j )  = 0.9' (taken from Reference 9) ,  which can be 
expressed as the following state-variable model : 

x ( j )  = 0.9x(j  - 1) + p ( j )  

4 j )  = x ( j )  + n(j) 
(18) 

(19) 
was used in this example. Then the unknown p ( j )  was 
estimated using both the proposed recursive SMLR 
equaliser and the DDFSE algorithm. Notice that the 
block size L for the former corresponds to the reduced 
memory = L - 1 for the latter. The simulation results 
are shown in Fig. 2, where crosses and plusses denote 

lnll 

equaliser for (L, N) = (6, 1) are quite close to those 
obtained by the DDFSE algorithm for 5 = 5 and much 
better than the results for (L, N) = (1, 1) which, as pre- 
viously mentioned, are equivalent to the results associ- 
ated with the above mentioned conventional DFE. These 
results indicate that the performance of the proposed 
recursive SMLR equaliser is comparable to the per- 
formance of the DDFSE algorithm for the same block 
length and both of them outperform the conventional 
DFE. On the other hand, the average of iter(k) over 
k = 1, 2, . . ., 500000 lies between 1.5 and 1.6 for each 
result (associated with the proposed recursive SMLR 
equaliser) shown in Fig. 2. A qualitative explanation for 
this is that when the initial values of p(k), d k  + I), . , . , 
Ak + L - 2) are all correct, the number of iterations 
spent for estimating p(k + L - 1) is equal to 1.5 on 
average, and that only a few percent of the initial values 
for A j ) ,  for j = k, k + 1 ,  . . ., k + L - 2 (taken from the 
previous recursion k - N) are incorrect on average. 
Therefore, the computational load required by the pro- 
posed recursive SMLR equaliser is proportional to 
iter(k) x L < 1.6 x L < 2' for this case. 

Example 2 ;  (finite-length channel) 
A channel with a finite-length impulse response 
v( j )  = 0.9j for j = 0, . . ., 5 was used in this example. The 
simulation results are shown in Fig. 3, where crosses and 

loor 
I 

10 12 14 16 
S N A , d B  

Fig. 2 Simulation results for the infinite one-pole channel with impulse 
response .ti) = 0.9 for j z 0 
+-+ and x-x SERs associated with the proposed recursive SMLR equaliser 
for (L, N) - (6.1) and (I N) = (1, I), respectively 
0-0 SERs associated with the DDFSE algorithm for the r e d u d  channel 
memory i = 5 (wmsponding to L = 6) 

SERs associated with the proposed recursive SMLR 
equaliser for (L, N) = (1, 1) and (L, N) = (6, I), respec- 
tively, and circles denote SERs associated with the 
DDFSE algorithm for [ = 5. Note, from this figure, that 
the results obtained by the proposed recursive SMLR 
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8 10 12 14 16 
SNR,dB 

Fig. 3 Simulation results for the channel with finite impulse response 
Vfi) = 0.P for j = 0, I, . . . , 5  
+-+ and x - x SERs associated with the proposed recursive SMLR equaliser 
for (L, N) = (6, 1) and (L N) = (I ,  I), respectively 
0-0 SNRs associated with hi& SNRM. I!-DFE 
A - - A  SERs associated with the MLSE-VA 

plusses denote SERs associated with the proposed recur- 
sive SMLR equaliser for (L, N) = (1, 1) (a conventional 
DFE) and (L, N) = (6, l), respectively, circles denote 
SERs associated with the high SNR (6, 1)-DFE and tri- 
angles denote SERs associated with MLSE-VA [4]. One 
can observe, from this Figure, that the results obtained 
by the proposed recursive SMLR equaliser for (L, 
N) = (6, 1) are quite close to those obtained by the high 
SNR (6, I)-DFE and much better than the results 
obtained by the conventional DFE. However, the results 
associated with MLSE-VA are much better than those 
associated with the proposed recursive SMLR equaliser 
and those associated with the high SNR (6, l)-DFE. The 
average of iter(k) too lies between 1.5 and 1.6 for each 
result associated with the proposed SMLR equaliser, 

IEE Proc.-Vis. Image Signal Process., Vol. 141, No.  3, June 1994 



which, again, indicates that the computational complex- 
ity required by the proposed recursive SMLR equaliser is 
proportional to iter(k) x L < 1.6 x L < 2= for this case 
as well. 

4 Conclusions 

We have presented a recursive SMLR equaliser for chan- 
nels in the presence of intersymbol interference of finite 
or infinite length and additive white Gaussian noise. The 
proposed recursive SMLR equaliser has a structure 
similar to Chi and Chen’s recursive SMLR deconvolution 
algorithm [20] although they are designed for different 
purposes. The proposed recursive SMLR equaliser is a 
block signal processing algorithm shown in Fig. 1 which 
processes the data block zk to decide the first N estimates 
of pk based on the L x M log-likelihood ratios In A(j ,  i )  
given by eqn. 8 for k < j < k + l - 1  and l < i < M  
where M is the number of different symbols for p(j )  E U. 
The computation of these L x M log-likelihood ratios 
In A(j ,  i) can be done quite efficiently by running once a 
causal filter (same as the channel) given by eqns. 11 and 
12 followed by an anticausal matched filter given by eqns. 
14 and 9 associated with the channel. 

The proposed recursive SMLR equaliser can also be 
viewed as a high SNR (L, N)-DFE with the optimum 
decision procedure replaced by the SMLR detection pro- 
cedure. The presented two simulation examples showed 
that for an infinite-length one-pole channel, the per- 
formance of the proposed recursive SMLR equaliser is 
comparable to the performance of the DDFSE algorithm 
for the same block size, and that, for a finite-length 
channel, the performance of the former is quite close to 
the suboptimum high SNR block DFE while the 
optimum MLSE-VA performs best. However, the com- 
putational load and storage required by the proposed 
recursive SMLR equaliser are linearly proportional to 
the block size L, while those required by the block DFE, 
DDFSE and Viterbi algorithm based channel equalisers 
increase exponentially with block size, reduced channel 
length, and channel length (or truncated channel length), 
respectively. 
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Appendix: Proof of eqns. 8-15 for computing 
the log-likelihood ratio In A ( j ,  i )  

1990) 

6 

Since the log function is a monotonically increasing func- 
tion, maximizing Sk{pk I zk} is equivalent to maximising 
the log-likelihood function as follows 

L 
2 In (&{PI I z k } )  = - - [In ( 2 4  + 2 In (a,,) + 2 In (M)] 

-- ere 
2af 

(24) 
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where 

q, = ( i (k) ,  i ( k  + I), . . . , i ( k  + L - = z k  - vp,? (25) 

in which 

p: = (ir(O), . . . , f l k  - I), p , ( 4  p,(k + 11, 
. . . , p,(k + L - l))T (27) 

and 

p: = W), . . . , P(k - 11, r,(k),. . . , p,(j  - I), uir d j ) ,  

One can see, from eqns. 21,25 and 5, that i(j) can also be 
expressed as eqn. 13 where i(j) is nothing but the output 
of the causal filter with the same impulse response as the 
channel. Therefore, i(j) can be computed with the same 
state-variable equations given by eqns. 11 and 12 as those 
for the channel. 

The log-likelihood ratio In A(j ,  i )  given by eqn. 24 can 
further be expressed as 

. . . , p,(k + L - l))r (28) 

From eqns. 23,25 and 26, we have 

qr - r1, = z k  - VP,+ - Zk + VP,+ = ujCp,(j) - d i ) I  
= UjCui - ~,(i)l (30) 

since p: differs from p: only in the ( j  + 1)th component. 
Now, substituting eqn. 30 into eqn. 29, we obtain 

where 

f ( j )  = uTq,/u: for j = k, k + 1, . .. , k + L - 1 (32) 
and 

a( j )  = uTuj/u; for j = k, k + 1, . . . , k + L - 1 (33) 
Therefore, we have proven that the log-likelihood ratio 
In A(j ,  i )  given by eqn. 8 is true. Next, let us show that 
f(j) given by eqn. 32 can be obtained by eqns. 9 and 14 
and that a( j )  given by eqn. 33 can be obtained by eqns. 
10 and 15. 

It can be easily shown, from eqns. 14 and 15, that 

(34) 

and 

From eqns. 32,25,23,4 and 34, we have 

which implies that f(j) can be obtained from the anti- 
causal state-variable model given by eqns. 14 and 9. 
Finally, from eqns. 33,23,4 and 35, we have 

k+L-1 

i = j  
a( j )  = 02(i - j)/u." 

= yTCw(j )y  (37) 
which implies that a(j) can be obtained from eqns. 15 and 
10. 
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